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Abstract: High-level (Level 4/5) low-speed automated vehicles (LSAVs) are being developed and deployed on select traffic 
corridors due to their perceived safety benefits and potential impact on the first mile/last mile problem. Introducing LSAVs 
may reduce crash severity due to their low speeds and rapid response times due to relying on sensors instead of human 
perception, but it is unclear how crash risk throughout the local traffic system is affected when an LSAV is operating in 
mixed traffic with human drivers. We present qualitative data on interviews of experienced LSAV safety operators along 
with quantitative data on field observations comparing local traffic behavior (i.e., lane changing) around an LSAV and a 
typical passenger vehicle in Rochester, MN, USA. We supplement the data with a preliminary risk analysis using the 
Functional Resonance Analysis Method (FRAM) to examine potential patterns of risk and system variability when drivers 
follow and overtake an LSAV. The quantitative analysis of the lane-changing data indicates that drivers are more likely to 
change lanes around the LSAV during normal operations, compared to the human-driven passenger vehicle. The qualitative 
analysis of interview transcripts indicates that the operators remain critical components in ensuring local traffic safety and 
efficiency, strategically filling in the gaps unmet by the currently employed technology through monitoring the traffic 
situation, taking pre-emptive control of the automated vehicle in anticipation of problematic scenarios, and communicating 
with other nearby drivers to communicate intentions and negotiate traffic conflicts. The presented FRAM modified a 
published FRAM model for drivers overtaking another human driver, instead assuming that the overtaken vehicle was an 
LSAV, such as the observed LSAV in Rochester, MN. The analysis indicated that the LSAV with current operational 
parameters had reduced some sources of variability in the traffic system while other sources of performance variability 
increased, suggesting mixed benefits of LSAVs for risk in mixed traffic. Overall, the findings indicate that system designers 
and safety professionals should plan and account for unexpected secondary sources of risk if LSAVs are deployed at scale. 
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1. Low-Speed Automated Vehicles in Mixed Traffic: A Preliminary Model of Risk 
 
Autonomous vehicles have the promise of making our roads safer and more efficient, as automation continues to 

take over lower-level control tasks (e.g., speed maintenance, lane-keeping) and has begun to take over higher-level tasks 
(Young & Stanton, 2023). However, machines cannot simply be a substitute for people, as system functioning, system 
dynamics, and how people perform given roles in complex systems are usually underspecified and poorly understood by 
technology designers, leading to unexpected and unintended consequences when implementing new technologies (Woods & 
Dekker, 2000). This is a problem that has long challenged the successful implementation of automation in aviation and naval 
operations (Sarter et al., 1997) and now challenges the implementation of automation in driving (Lee & Seppelt, 2012). 
Automation technologies change systems by changing the nature of feedback (e.g., cues, modes), the task structures within 
the system (e.g., algorithms different than human mental models, behavioral adaptation), as well as the relationships between 
actors (e.g., expectations, trust). For driving, automation represents a unique challenge, because not only is the driving 
environment visually and physically complex and requires the performance of multiple overlapping tasks, but unlike in most 
other domains, drivers are not specially trained in how to handle automated systems and represent a large population that 
spans a significant range of experience, age, goals, capabilities, and sociocultural background (Lee & Seppelt, 2012).  
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Given that automation has only begun to take over higher-level driving tasks (e.g., Level 3 automation), it will be 
some time before fully automated (e.g., Level 4 and 5) vehicles are a significant presence on the road, giving safety 
professionals and those involved in risk management time to evaluate the effects that fully automated vehicles may have on 
the roads in significant volume. Currently, the initial exposure drivers will have to a fully automated vehicle will likely be 
automated shuttles. As of 2023, there have been over 30 pilot programs for connected and automated shuttles in Europe 
(Chaalal et al., 2023), and as of 2021 at least 17 pilot projects for low-speed connected and automated shuttles in the United 
States, with more underway (Coyner et al., 2021; Hague & Brakewood, 2020). Automated shuttles are of particular interest 
because they promise better accessibility to the transportation network for those who need it, thereby improving equity and 
sustainability, while providing an avenue to address the first-mile last-mile problem (Chaalal et al., 2023). The piloting and 
deployment of automated shuttles, particularly their low-speed iterations in mixed-traffic environments, allows for the 
examination of incidents of fully automated vehicles interacting with the traffic system and the corresponding unexpected 
and unintended consequences of implementing these technologies to better prepare for and mitigate risks of other types of 
automated vehicles (e.g., passenger vehicles). Currently, risk assessment for fully automated vehicles has primarily used 
simulation modeling and prospective accident analysis (Garg & Bouroche, 2023). These more speculative approaches are 
valuable, but no substitute for direct examination of the system in the world, as nature is far greater than the imagination of 
humans (Feynman, 1955). With multiple methods, we assess the risks of fully automated vehicles within mixed traffic, 
specifically low-speed automated vehicles (LSAV), given the availability of real-world deployment data with LSAVs. 
 
1.1 Automated Shuttles and Risk 
 

Low-speed automated shuttles have been modeled as improving safety while reducing efficiency in mixed-traffic 
scenarios (Garg & Boroche, 2023). However, there are hazardous circumstances that occur more frequently with LSAVs 
present. Drivers were reportedly frustrated at the slow speed of LSAVs in pilot deployments (Nesheli, et al., 2021) and there 
were greater rates of close car-following behind an LSAV (Wen et al., 2022). There are correspondingly greater rates of rear-
end and sideswipe crashes for LSAVs relative to human-driven vehicles (Houseal et al., 2022; Zhu & Meng, 2022). An 
impatient driver may attempt to change lanes and overtake the LSAV, and drivers that attempt to overtake a slow or stopped 
lead vehicle may take their eyes off the road ahead to view the adjacent lane, leading to more sideswipe and rear-end crashes 
(Muttart et al., 2021). Drivers may also have incorrect expectancies for automated vehicles such as LSAVs (NTSB, 2019). 
When a car-following driver is expecting the lead vehicle to match the overall speed of traffic and is momentarily distracted, 
this could lead to a rear-end crash if the lead vehicle is an LSAV on a street with higher average traffic speeds. Another 
example of an unmet expectancy includes the anticipation that drivers of lead vehicles will turn right-on-red (if this maneuver 
is legal), with potential frustration and risk-taking on the part of following drivers when this expectancy is not met if the 
LSAV is programmed to not turn right-on-red.  

LSAVs behaving in unexpected ways, such as not turning at an intersection on a red light when legal, is one 
example of a potential source of risk of automated vehicles that is not a direct consequence of the low speeds of the vehicle. 
Another source of risk that is not directly associated with low vehicle speeds is ambiguous feedback to other nearby drivers. 
Because new technology responds differently to human expectations, additional communication is needed at least during the 
initial deployment periods (Mirnig et al., 2022). A survey of eHMI designs has found that the designs have been targeted 
towards pedestrians and cyclists, with only a minority of eHMIs intended for vehicle-to-vehicle communication (Dey et al., 
2020). The content of the eHMI messages toward pedestrians mirror the content of the communication dynamics between 
drivers and pedestrians. The eHMI for pedestrians uses icons, text, or abstract symbols to communicate stopping or yielding 
(Dey et al., 2020), whereas human drivers communicate by eye contact, hand gestures of the friendly variety, and flashing 
their lights to indicate stopping or yielding (Sucha et al., 2017). However, there are several communication channels and 
strategies between drivers, including the use of signals and hand gestures to indicate intentions, commands, or social etiquette 
(Renge, 2000). Having eHMI fulfill this role has not been a focus of research, outside of some preliminary work considering 
eHMI’s role in reducing conflicts at intersections, close following, and overtaking (MS1 and MS2 in Mirnig et al., 2022).  
 
1.2 Med City Mover Project 
 

The Med City Mover (MCM) project was an LSAV demonstration in downtown Rochester, MN, USA, during 2021-
2022. It comprised of two 6-person LSAV shuttles manufactured by EasyMile and operated by First Transit. The shuttles 
navigated an approximately 1.3 mi (~2 km) rectangular loop around the business district, residential neighborhoods, as well 
as the Mayo Clinic. The shuttles either progressed straight or made right turns at intersections to complete the route, which 
included two stops to pick up and drop off passengers. The shuttles always had a safety attendant/operator aboard. The street 
was shared by other traffic, including passenger vehicles, buses, human-driven shuttles, cyclists, and pedestrians. The speed 
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limit on all roads was 25 mph (~40 km/h), and represented a variety of street types, including 2-lane roads, one-way roads, 
and 4-lane roads. The MCM shuttles operated at roughly10-12 mph (16 km/h) and took roughly 25 minutes to complete one 
loop of the route. The stated intention of the MCM project was to demonstrate the feasibility of automated shuttles to the 
public via engagement, test the technology’s performance, and identify needed infrastructure changes to the roadways to 
operate similar vehicles safely (MnDOT, n.d.). The research team investigated the propensity for risky behavior by other 
drivers around the MCM while the MCM was in operation, particularly lane changing of nearby drivers. 

 
1.3 The Present Study 

 
The investigation of risk imposed by these LSAVs used multiple methodologies. The first was a field study 

examining the rate of lane changes by nearby drivers around the MCM shuttles when in operation, relative to the rate of 
incidents around a human-driven passenger vehicle. The second was a series of qualitative semi-structured interviews with 
safety attendants of the MCM shuttles and similar deployments or their trainers and managers. Finally, based on the 
interviews and the field observations, the research team modeled risk from this iteration of the LSAV using a previously 
constructed FRAM for driver overtaking of a lead vehicle (Hollnagel, 2017).  
 

 
2. Method 

 
2.1 Quantitative Field Observations 
 

A research team member boarded an MCM shuttle that was on its rectangular route around downtown Rochester. 
For comparison, a member of the research team also boarded a researcher vehicle (e.g., a passenger car or SUV) that drove 
the same route as the MCM shuttles. While on the MCM shuttle, the researcher recorded the behavior of vehicles around the 
shuttle, including vehicles that would change lanes from behind the shuttle or change lanes to cut in front of the shuttle, or 
both. The same measures were taken when the researcher boarded the passenger vehicle, driven by another member of the 
research team. These counts were aggregated into a single lane change measure, one for the MCM shuttle, and one for the 
human-driven researcher vehicle. The research team collected driver behavior counts for 46 total loops onboard an MCM 
shuttle and 48 total loops onboard the researcher vehicle, across a four-month period from May 2022 through August 2022.  
 
2.2 Qualitative Interviews 
 

The research team interviewed 6 individuals. Three of the 6 had previous experience as safety operators of 
automated vehicles like the MCM, and 3 of the 6 interviewees had experience being a safety attendant on the MCM shuttle. 
Interviews were conducted via videoconference to take advantage of transcription software and ease of access to the 
participants. The interviews were conducted in a semi-structured format with 19 prepared questions covering general 
experience questions, training, shuttle operation, and safety, interactions with other drivers, and multimodal safety questions 
focused on pedestrians. Interviews typically took approximately an hour to complete. 

Interview transcripts were coded using grounded theory, in which insights and codes were developed as part of the 
coding process. After agreeing upon an initial codebook, consisting of 70+ unique codes, two researchers independently 
coded the remaining interviews with Taguette software (Rampin R & Rampin V., 2021). Additional codes were added over 
the course of the coding when needed, and coding ended once an interview resulted in few new codes (i.e., 5% new), 
indicating saturation. An analysis indicated good agreement between coders. Researchers then developed higher level “axial” 
code groupings.  
 
2.3 The FRAM Risk Assessment 

 
The research team borrowed from a published FRAM model analyzing the patterns of performance variability 

between a human-driven vehicle overtaking a lead vehicle and an automated vehicle overtaking a lead vehicle (Grabbe et al., 
2022). Given the present emphasis on lane changing and overtaking by other vehicles, the published FRAM model by Grabbe 
and colleagues (2022) was slightly modified to remove a subset of the functions in their instantiated model, focusing only on 
a four-lane road with the presence of a lead vehicle and a following vehicle. Instead of asking about the performance 
variability when the following vehicle is automated, the modified model considered the performance variability that arises  
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Figure 1. Average lane change count by observation period around the observed vehicles per location. Error bars are SE. 
 
 
when the lead vehicle is an LSAV. Otherwise, the functions and aspects of the functions remained consistent with the 
previous model. On the simplified and modified FRAM model, the research team determined whether each function was 
carried out by a human, machine, or organization, generated the sources of internal and external variability for each function 
and then allowing for couplings between the functions implied by the scenario description. With the couplings established, 
the team described the potential functional coupling variability between functions (Hollnagel, 2017). 
 
 

3. Results 
 

3.1 Quantitative Field Observations 
 

The coded count data was analyzed with a Vehicle Type (MCM, RV) by Time of Day (Early Morning, Late 
Morning, Lunch, Early Afternoon, Late Afternoon) by Location (3rd Ave., 6th St., Broadway Ave., Center St.), Between-
Subjects ANOVA, a 2 x 5 x 4 design. The only significant effect was a Vehicle Type x Location interaction, F(3, 15.6) = 
10.27, p = .001, ηp

2 = .664. A post hoc analysis found that the number of observed lane changes around the vehicle in 
question significantly differed depending on location. There were significantly more average lane changes around the MCM 
LSAV compared to lane changes around the human-driven researcher vehicle for 3rd Ave (2.16 vs. 0.98, p < .001), 6th St 
(0.95 vs. 0.00, p = .001), Broadway Ave (3.08 vs. 0.265, p < .001), but not for Center St (.21 vs. .03, p = .549). Center Street 
at the time of observation was a two-lane road with relatively high traffic density for similar road types. The other three 
locations were multiple-lane roadways allowing for more than one lane of traffic for a direction of travel. See Figure 1. 

 
3.2 Qualitative Interviews 
 

The analysis of the qualitative interview coding produced a significant number of axial codes, each describing a 
different challenge or phenomenon encountered by LSAVs. These codes pertained to interactions from other road users, 
safety measures/systems, technical difficulties of LSAVs, and safety operator strategies, procedures, and protocols. A subset 
of the major axial codes can be viewed in Table 1. 
 

Table 1. Subset of Major Axial Codes from LSAV Operator/Attendant Interviews 
 

Operators take over and manually stop 
further away from crossing pedestrians 

The LSAV does not drive like a normal car, 
leading to disruptions and frustration 

Operators interact with others outside the 
LSAV to communicate intentions 

LSAV behavior designed on legal traffic 
behavior and encounters issues when 

humans break traffic rules 

Objects marginally in the lane of travel 
(construction, parked cars) forced operators 

to manually drive around 

During periods of heavy traffic, the LSAV was 
occasionally taken off the road due to the 

potential traffic disruption 

Operators do pre-trips/test runs as a 
procedural part of a workday 

Other drivers often pass and overtake 
recklessly due to the LSAV's slow speeds 

Drivers do not understand how the LSAV 
"thinks" 
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Figure 2. FRAM functions for communication between vehicles and their connections highlighted. 
 
 
3.3 The FRAM Risk Assessment 
 

Preliminary FRAM analysis found that 23 of the 73 total functions had an atypical variability for its function type, 
indicating that these functions had a potentially higher rate of disruption. A pair of functions were identified contributing a 
disproportionate amount of influence within the system: “use non-verbal person-to-person communication (lead vehicle)” 
and “observe any person-to-person communication from lead vehicle,” highlighted in Figure 2. This interaction these 
functions represent is integral to the outcome of the scenario in this model, with many upstream functions having atypical 
variability, and many downstream functions relying on the output of this pair. 
  
 

4. Discussion 
 

While the technological safety measures in place ensure that the LSAV itself rarely crashes into anything, the 
inflexibility of the system often affects surrounding traffic in a disruptive manner. The lane-changing data demonstrates that 
drivers are more likely to change lanes around the LSAV during normal driving, compared to a human-driven passenger 
vehicle, indicating the magnitude of the agitation felt by surrounding drivers. The interview data indicates the operators 
aboard the MCM were regularly able to intervene in challenging situations, strategically filling gaps unmet by the automation 
by monitoring traffic and the route, taking pre-emptive control of the automated vehicle in anticipation of problematic 
scenarios, and communicating with other nearby drivers to communicate intentions and negotiate traffic conflicts.  

The FRAM analysis indicated that the LSAV with current operational parameters reduced some sources of 
variability in the traffic system by converting some roles normally occupied by humans into functions performed by 
technology. However, consistent with the interview data, the FRAM model demonstrated the value of human 
operators/attendants. Human-to-human communication with the following vehicle was modeled with significant performance 
variability, with many upstream functions influencing the output, and many downstream functions being influenced by that 
output. This suggests that these communicative functions have the potential for significant functional resonance within this 
system (Hollnagel, 2017). Effective communication provides an opportunity for operators to calm traffic around the LSAV, 
potentially reducing the risk of aggressive overtaking. Thanks to the large windows in the MCM, operators can engage 
directly with other drivers through hand signals and facial expressions and partially explain the LSAV’s situation.  

LSAV operators were able to dampen the disruptions the LSAVs otherwise would have had on the traffic system by 
adjusting or adding to their operating procedure. Humans can adjust their performance to changing situations, unlike most 
technology, and adopt this necessary communicative role. Companies would like to remove these onboard attendants 
altogether, but they should not do so until they have developed an adequate eHMI repertoire for vehicle-to-driver 
communication, as most efforts in eHMI development has focused only on vehicle-to-pedestrian messaging (Dey et al., 2020) 

Overall, the findings indicate that system designers and safety professionals should plan and account for unexpected 
secondary sources of risk if LSAVs are deployed at a significant scale, with a combination of low-severity accidents directly 
involving an LSAV and infrequent, high-severity accidents indirectly involving an LSAV, due to disruptive effects on traffic. 
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The operator’s ability to intervene and assist the LSAV when needed, managing situations that would otherwise be disruptive 
to the surrounding mixed traffic remains valuable to system functioning and cannot yet be easily replaced with eHMI. 
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