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Abstract Statistical Power Analyses (SPAs) estimate required study sample-sizes (Ns) to ensure a high likelihood (1-β, aka.” 
Power”) of correctly rejecting a no-difference (null) hypotheses with a low target significance level α.  SPAs are often 
initially conducted to assess relative requirements for success from amongst alternative experimental design, method and/or 
analysis combinations. SPAs also typically are mandated by Institutional Review Boards (IRBs) as part of ethical ‘risk-
benefit considerations. Paralleling SPA concerns, IRB risk-benefit considerations – encountered in ergonomics and safety 
studies – include ensuring: 1) Minimized numbers of participants put at risk (as also their magnitude); but (2) Participant 
numbers are also sufficient for a high likelihood of capturing meaningful results. Toward addressing such issues, we outline 
a new-algorithm that – in contrast to previous rules requiring a secondary accuracy check  – yields 1-Step conservative 
estimates of required sample sizes (Ns). Key to this development is an estimate for Student’s t-distribution – with dF 
degrees-of-freedom – in terms the classical Normal-Gaussian (Z)-Distribution: t(α,dF) ≈ (dF/(dF-3))1/2Z(α). The utility of 
this approximation is evaluated against exact corresponding t-distribution “threshold” values: dF = 10 to ∞ for salient α,1-β-
combinations. Combinations include 1- and 2-tailed for both 0.05,0.80 and .01,0.90 (the latter is required minimum for 
medical and low-replication-probability-studies). Subsequently, taking advantage of the t(α,dF) approximation, required N 
may be expressed in terms of an equation with functions of N on both sides. This is readily resolved by (1) Isolation of N in 
terms of a ratio on one side of the expression and (b) Synthetic division that serves to yield the desired conservative 1-Step 
algorithm. The 1-Step algorithm is explored following its derivation. This includes updating to classical 1- and 2-tailed 
(α=0.05, 1-β=0.80) “rules-of-thumb; as well as, new 2-tailed α=0.01, 1-β =0.90 variants for medical and unlikely-to-be-
replicated research. Also explored are error-analysis implications of the algorithm when input terms are estimated from 
previous research.   

Recommended are adoptions of  both: (1) the newly derived conservative 1-Step Rules-of-Thumb and (2) 
associated error-analysis considerations.  

Keywords: Statistical Power Analyses (SPA), Conservative Algorithm, New Rules of Thumb 

 
1. INTRODUCTION 

 
1.1 Statistical Power Analysis  
 

Statistical Power Analysis (SPA) estimates the smallest sample-size (N) for a study given: a required significance 
level (α), effect size (∆) and a high likelihood “power (1-β)”of rejecting null hypotheses (e.g., Scheffe’, 1959; Cohen, 1988; 
1992).  Toward minimizing research costs (financial and time), SPAs may be conducted to access sample-size requirements 
from amongst alternative experimental design, method and/or analysis options. In this regard, we have previously explored a 
wide range of options for more powerful human-factors/ergonomics (HF/E) research (e.g. Bittner. Bramwell et al., 1998; 
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Bittner, Winn et al., 2003; 2004 a&b). Relatedly, SPAs are typically mandated by Institutional Review Boards (IRBs) as part 
of ethical ‘participant risk-benefit considerations (e.g., Vollmer & Howard, 2010). In this  regard,. risk-benefit considerations 
– encountered in ergonomics and safety studies – include ensuring: (1) Minimized numbers of participants put at risk (as also 
their magnitude); but (2) Participant numbers are also sufficient for providing a high likelihood (power) of capturing 
meaningful results. These – together with research cost minimizations – have encouraged the development of technically 
accurate methods (Scheffe’, 1959; Cohen, 1988;1992; Wang, & Ji, 2020).) as well as quick, but less trustworthy 
“approximations” (Lehr, 1992; Dunlap & Kennedy, 1995; Bittner & Bittner, 2009).  SPA Rules-of-Thumb (ROTs) – and 
kindred approximate SPA tools – long have been suggested for initially “sizing” an experimental design (1st Step), but with a 
following-up (2nd Step) with a technically accurate method (e.g., Lehr, 1992; Van Belle, 2011).  
 
1.2 Purpose 
 

We have three primary goals in the following.  Our first (Sec 2.1) is - in concert with demonstrating the 
approximation: t(α,dF) ≈ (dF/dF-3)1/2Z(α) – to derive the new 1-Step algorithm.  Our second (Sec 2.2) is to consider 
immediate implications of this algorithm for classical ROTs as well as 1-  and 2-tailed variants (per, Pocock, 1988) for 
“…medical and unlikely-to-be-replicated research” (i.e., α=0.01, 1-β =0.90). Our final goal (Sec. 3) is to 1) Recommended 
near-term adoption of our newly derived conservative 1-Step rules-of-thumb, and 2) Longer-tern explorations of SPA error-
analyses that prospectively could more robustly estimate required sample sizes. 
 
  

2. 1-STEP DERIVATION AND IMPLICATIONS 
 

2.1 Derivation 1-Step Algorithm 
 

Our generalized derivation will be conducted in three steps. In Sec 2.1.1, we will initiate our derivation by 
consideration of a “clumsy” extension (Eq. 1c) of a classical case (i.e., Eqs. 1a&b).  This clumsiness arises as Eq. 1c  has 
functions of required N on both its sides; whereas,  Eqs. 1a&b escape this with the assumption of an effectively asymptotic  
(→ ∞) required sample size (N).  In Sec 2.1.2, we explore the effectiveness of an approximation use to resolve the 
clumsiness of (Eq. 1c).   This sets the stage for final derivation of our 1-Step algorithm in 2.1.3 and subsequent exploration of 
its implications in Section 2.2.  

 
2.1.1 First Steps. 
The derivation – of required group sample size N –  begins with a readily understood U-statistic outlined below [Eq. 

1a], that has been widely shown to apply for comparison of the means of two independent groups where the sample-size is 
treated as if effectively asymptotically large (e.g., Bittner & Bittner, 2009). 

  
U =    ____∆ ____         =   Z(α) + Z(1-β)                      (Eq. 1a) 

     [2σ2/(N)]1/2 
 
Where: ∆ = a minimum “critical difference” identified by practitioner-researchers as important to detect [e.g. difference 

between two population means (µ1-µ2)]. 
 2σ2/N = exact variance of the critical difference ∆ [e.g., for difference of two independent means – with common 

variance σ2 and N observations each condition], and 
 Z(α) is the Gaussian z-score value appropriate for α significance level (e.g., 0.05) given number of tails (i.e., 

1.645 1-tailed or 1.960 2-tailed in 0.05 case), and 
  Z(1-β) is the Gaussian z-value for desired power level 1-β (e.g., 0.80 or 0.90).  
Here, one might note that the left side of Eq 1a is set up much like a classical U-test for significance, but with a threshold 
value of Z(α) + Z(1-β) on the right (vs. Z(α)).  The requirement for adding Z(1-β) – to achieve a 1-β = 0.80 – may be 
appreciated by consideration of Figure 1. Specifically, the 1.96 cutoff (α=0.05, 2-tailed) with no difference (I), may be seen 
to require displacement (0.84) further to 2.80 (1.96+0.84) to assure that the percentage of its cases falling below 1.96 is 20% 
(i.e., β=0.20) and power 1-β=0.80).  With this in mind, we note that one may rearrange terms of Eq. 1a to solve for N: 
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N = 2[Z(α) + Z(1-β)]2(σ2/∆2)         (Eq. 1b) 

 
 

Fig. 1. Illustration of 2-tailed α=0.05,1-β=0.80 (Z(α)+Z(1-β) =2.8) 
 
 
Eq. 1b  – as we will see later – leads to a number of ROTs that have previously proven useful; albeit, with 

recommendations for 2nd steps (Lehr, 1992; Van Belle, 2011).  Accuracy issues occur because N is not effectively asymptotic 
which is addressed by substituting the more general  t(dF,α) and t(dF,1-β)] for  Z(α) and  Z(1-β)] in Eq. 1b to obtain: 
 

N = 2[t(dF,α) + t(dF,1-β)]2(σ2/∆2)         (Eq. 1c) 
 

where dF = N-1 is the most conservative estimated vis-à-vis the Brehens-Fischer Problem (e.g., Welch, 1938). The 
complication “clumsiness” with this form (Eq 1c) is that the t-values are a function of N (i.e., N represented on both sides}.  
In the next section (2.1.2) we will consider our robust t-distribution approximation that will prove helpful in resolving this 
issue.  
 

2.1.2 t-Distribution Approximation. 
Table 1 below explores the accuracy of a t-distribution approximation selected to resolve the noted clumsiness (i.e., N 

represented on both sides of Eq 1c).  Suggested by the form of an earlier approximation (Bittner & Bittner. 2009), this is: 
 
 t(α,dF) ≈ (dF/(dF-3))1/2Z(α)         (Eq. 1d)  

  
 

Table 1. Exact and Approximate Significance (α) and Power-Shift (1-β) t-Values 
 

  
      ONE-TAILED t(α,dF) 

 
TWO-TAILED     t(α,dF) 

 
         POWER t(1-β,dF) 

DEGREES OF 
FREEDOM (dF) 

 
α = 0.05 

 
α = 0.01 

 
α = 0.05 

 
α = 0.01 

 
1-β = 0.8 

 
1-β = 0.9 

Infinite 1.645 
1.645 

2.326 
2.326 

1.960 
1.960 

2.576 
2.576 

0.841 
0.841 

1.282 
1.282 

100 1.660 
1.670 

2.364 
2.362 

1.984 
1.990 

2.626 
2.615 

0.845 
0.854 

1.290 
1.301 

25 1.708 
1.745 

2.485 
2.480 

2.060 
2.089 

2.787 
2.746 

0.856 
0.897 

1.316 
1.367 

15 1.753 2.602 2.131 2.947 0.866 1.341 

2.80

1.96

0.84

I II

0 1.96 2.8
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1.839 2.601 2.191 2.880 0.940 1.433 
10 1.812 

1.966 
2.764 
2.781 

2.228 
2.342 

3.169 
3.079 

0.879 
1.005 

1.372 
1.532 

Examining Table 1, one may note that all values for the approximation (in blue) are near those exact (dF = 10 to 
∞).  Most importantly, where (α=0.01) approximations are less than exact, the approximate t(1-β, dF) exceeds the exact 
sufficiently such that substituting the approximation for term [t(dF,α) + t(dF,1-β)] in Eq 1c will result in a conservative 
estimate for N. We make this substitution – and complete our basic derivation --in the next section (2.1.3). 

 
2.1.3 Conservative Algorithm Derivation 
Derivation of our conservative algorithm may now proceed with substitution of the t-distribution approximation 

(i.e., Eq. d) for the exact values in Eq. 1c to initially obtain: 
 
N ≈ 2[(dF/(dF-3))1/2Z(α) + (dF/(dF-3))1/2Z(1-β)]2(σ2/∆2)      (Eq. 1e) 

 
where it may be recalled that in the context of Eq. 1c, (i.e. Welch, 1938) that conservatively dF = N-1. Making this latter 
substitution, and collecting terms, one obtains: N  ≈ (N-1)/(N-4) [2[Z(α) + Z(1-β)]2(σ2/∆2)]  
or equivalently 
 

N[(N-4)/(N-1)]  ≈  2[Z(α) + Z(1-β) ]2(σ2/∆2)         (Eq. 1f) 
 
where the right-hand expression is that seen with Eq. 1b, upon which traditional ROTs are based!  Further, noting via 
synthetic division ion that the left-hand part of the expression  
 

 N[(N-4)/(N-1)] = N-3 – (3/N-1) < N-4 for all N > 4  
 

 Hence, simply adding 4 to the traditional asymptotically based estimates – seen earlier (Eq. 1b) --   will quite generally 
provide a conservative estimate (Eq. 2) for required N, within certainly the range N > 10 where the approximation (Eq. 1d) 
was shown conservative.  
 

N = {2[Z(α) + Z(1-β)]2(σ2/∆2)} +4          (Eq. 2] 
 
This [Eq. 2] is the general form which will be explored regarding implications in the following Section (2.2) 

 
 

2.2 Implications 
 
 Drawn in the following are two implications of Eq 2. First, in 2.2.1, are implications regarding our conservative 1-
Step exact and revised rules-of-thumb estimates for required sample sizes (N).  The second, in 2.2.2, considers an obvious – 
but relatively unexplored – utilization of the rules-of-thumb for error-analyses toward addressing specific component (re: σ2 

and/ or ∆) variability – issues that frequently occur in HF/E.  
 

2.2.1 1 Step and Classical Sample Required Sample Sizes Computations 
 Table 2 summarizes – for four cases of special interest – the computations for the Coefficients, Asymptotic sample-
size and our conservative N Requirements.  Cases include combinations of one- and two-tail tests with most typically 
applied (α = 0.05, 1-β = 0.8) and that (α = 0.01, 1-β = 0.9) which is typically required for medical and low-replication-
probability-studies. Values for the Z(α) and Z(1-β) in computing the coefficient of Eq. 2, were conveniently obtained from 
the first row of Table 1 as Z(α) = t(α,dF= ∞).  For 2-tailed (α= 0.05, 1-β = 0.8), we can see from the table that (Z(α) + Z( 1-
β)) = 1.960 + 0.841 = 2.80 (rounded) which is the case illustrated earlier in Figure 1. The coefficient of Eq. 2 is easily 
computed as twice the square of 2.801 or 15.7 (≈ 16) as shown under the coefficient column for 2-tailed with α= 0.05, 1-β = 
0.8.  
 Table 2, under “Asymptotic N Requirement”, one may note two approximations that (while requiring a second 
step) have long been broadly employed (Lehr, 1992; Van Belle, 2011).  Also delineated are two cases (α = 0.01, 1-β = 0.9), 
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that we believe are original here.  Our Conservative 1-Step N Requirements are summarized in the last column where only 
rounded values are shown for  the α= 0.01 as remarkably close to the exact. 
 
Table 2.  Classical  and 1-Step Required Sample-Size (N) Computations and Associated Rules-of-Thumb. 

 
  

COEFFICIENT 
2[Z(α) + Z(1-β)]2 
 

 

ASYMPOTIC N 
 REQUIREMENT 

 

CONSERVATIVE 1-STEP 
N REQUIREMENT 

ONE-TAILED 
 

α = 0.05, 1-β = 0.8 
      12.36 
   ≈ 12.5 

  N = 12.36(σ2/∆2) 
     ≈  12.5 (σ2/∆2)* 

  N = 12.36(σ2/∆2)+4 
      ≈ 12.5 (σ2/∆2)+4** 

 

α = 0.01, 1-β = 0.9 
      17.3   
   ≈ 17 

  N = 17.13(σ2/∆2) 
      ≈ 17 (σ2/∆2) 

 
   N ≈ 17(σ2/∆2) + 4** 

TWO TAILED 
 

α = 0.05, 1-β = 0.8 
      15.7 
   ≈ 16 

  N = 15.7(σ2/∆2) 
      ≈ 16 (σ2/∆2)* 

   N = 15.7(σ2/∆2) + 4 
       ≈ 16(σ2/∆2) + 4** 

 

α = 0.01, 1-β = 0.9 
       21.0 
    ≈ 21 

 
  N = 21 (σ2/∆2) 

 
    N = 21(σ2/∆2) + 4** 

     * Classical Rule of Thumb (Lehr, 1992; Van Belle, 2011).   **1-Step Rule of Thumb 
 

2.2.2 Error-Analysis  
  Introduction of error analysis – into considerations of required sample sizes (N) – may seem unusual until 
realizations that σ2 and/or ∆2 are frequently only estimates. In our HF/E experience, σ2 is most often estimated from an 
earlier study (e.g., performance or risk); whereas, ∆2 may be a rough value drawn from other study types (e.g., marketing).  
Error-analysis, in these situations as we will see, suggests why research oft falls short of power (e.g. Schneck, 2023).  More 
importantly, it also can  be useful in making more accurate N sizing selections.  Applying (to Eq. 2 after subtracting 4 from 
both sides) the classical approach (Deming, 1943, pp. 37-48; Cameron, 1982, esp. p.549), we find the total differential form:  
 
  d(N-4)/(N-4) = dC/C+ d(σ2)/σ2- d(∆2)/∆2        (Eq. 3) 
 
 Where C = 2[Z(α) + Z(1-β)]2 is a constant (hence dC/C =0).  Continuing our general approach: (i) Noting d(N-4) = d(N, (ii) 
Replacing differentials with small incremental values, (iii) Squaring both sides, (iv) Taking expected values, and (v) 
Assuming zero covariance between estimated σ2 and ∆2, one may obtain: 
 
  Var (N) ≈ ((N-4)/σ2 )2Var(C) + ((N-4)/∆2 )2Var(∆2)                   (Eq. 4) 
 
Where the variances Var(σ2) and/or Var(∆2) can come from previous studies that produced the input σ2 and ∆2 values. The 
implications of Eq. 4 may be considered in in an exemplar 2-tailed (α = 0.05, 1-β = 0.80 case, where desired ∆2 = 0.64 for a 
Jackknife estimated σ2 =1 (here normalized for confidentiality). Employing our new Table 2 1-Step rule, N = 16 (σ2/∆2) + 4 
= 29.  However, in light a modest associated Jackknife estimated Var(σ2) = 0.01, Eq. 4 would imply Var (N) ≈ 292(0.01) ≈ 
6.25 which would correspond to Standard Deviation of  the Required N = 2.5.  This – in addition to maybe prompting a 
search for a more accurate estimate of σ2 –would arguably support a significantly increased required sample size (e.g., ~31).  
We and our colleagues – not surprisingly – have found kindred error–analyses “enlightening.” 
  
 

3. CONCLUSION AND RECOMMENDATIONS 
 

We met our goals as outlined earlier.  First – after demonstrating of the functional accuracy of t(α,dF) ≈ (dF/(dF-
3))1/2Z(α) in Table 1 –  we completed the derivation of the 1-step algorithm (Eq. 2).  Second, using this (Eq. 2), we first 
employed it in developing new 1-Step Rules-of-Thumb (Table 2).  Of note, these new ROTs included novel 1- and 2-tailed 
variants applicable for medical and unlikely-to-be-replicated research (i.e., α=0.01, 1-β =0.90).  Further, building off Eq. 2, a 
classical “error-analysis” approach was used to derive Eq. 4, which is applicable for exploring Var(N) as a function of the 
variability of SPA input values (i.e., σ2 and ∆2).  Toward illustrating applications of Eq. 4, an exemplar was offered that 
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pointed toward a requirement to increase initially computed required Ns, to account for inherent variances in the input values 
(e.g. when drawn from previous studies).   It is clear – in meeting goals – that our results arguably offer opportunities for 
enhancing the processes of SPAs.  We consequently recommend adoption of both (1) Our newly derived conservative 
1-step Rules-of-Thumb, and 2) Associated error-analysis considerations.  
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