Hazard Analysis of the Craftsman Drill Press

Chiemezie Anthony Udemba, J.P. Purswell, and Mehmet Bayram Yildirim

¹Wichita State University-Kansas Department of Industrial, System, & Manufacturing Engineering 1845 Fairmount St, Wichita, KS 67260

Corresponding author's Email: caudemba@schokers.wichita.edu

Abstract: A hazard analysis of an industrial drill press is presented. The analysis included a discussion of prior injury data, a preliminary hazard analysis (PHA), a fault tree analysis (FTA), and a failure mode and effects analysis

{FMEA} of a Craftsman drill press (include model number), with attention given to pre-operational safety, operational safety, and housekeeping concerns. Based on these various analyses, the most common and the most severe injuries were identified, as well as the causes of these accidents. The results show that the accidents with drill presses are consistent with the hazards identified by the OSHA website. Most of the injuries are amputations, with the second most frequent being fractures. Electrical shock injuries were also a concern. The preliminary hazard analysis reveals that the hazard controls for both amputations and fractures were similar: Drill users must avoid wearing loose clothing or jewelry that may become caught on the spinning drill. In general, amputations are among the most severe and disabling workplace injuries that often result in permanent disability. In terms of strategies to prevent re- occurrences of these accident scenarios, the most useful would appear to be adequate training towards improving the use of drill press, with attention to clothing and jewelry worn by the operator. The second important hazard control is verifying that all manufacturer-supplied guards are in place before use. Because users may not receive the drill press in a "new" condition, familiarity with OSHA machine guarding publications such as OSHA 3170 can cue a user to guards which may have been removed and not replaced. Pre-operational checks should also verify that no wiring has come loose to reduce the electric shock hazard. The Fault Tree Analysis revealed another basic cause of injuries and amputations. In addition to concerns about loose clothing and jewelry, improper securing of the workpiece can cause operator injuries as well, so verifying that the workpiece is secured before drilling is also a necessary precaution. The Failure Modes and Effects Analysis identified issues with the belt cover, the guarding of the spindle, and the securing of the drill press to the floor.

Keywords: Product safety, Hazard analysis, System safety

1. Introduction

A drill press is a wood cutting machine that uses a multiple-cutting-edged rotating tool to remove wood and produce a hole in the stock. Normally, drilling machines are vertically arranged with the tools having variable speeds and feeds. They may also have multiple spindles for gang drilling [5]. The most used drilling machine is a single- spindle, floor-mounted, belt-driven machine for non-production drilling. Nowadays, the drill press comes in a floor or bench mounted model. It has a motor driven head that has a chuck that accepts bits and cutters. It also has an adjustable table on which the work is mounted. The drill press is operated by pulling a rotary lever which lowers the drill bit/cutter into the work material.

2. Accident History Discussion

Accidents are possible with the type of hazard analysis of the craftsman drilling press, there are several hazard specification and safety warnings for a reason. Personal protective equipment (PPE)must be worn, and safety precaution must be taken in consideration to avoid injury [1]. The results show that the accidents with drill presses are consistent with the hazard identifications given by the OSHA website. Most of the injuries are amputations; the first two sections are the recognizing and controlling amputation hazards, look at sources of amputations, and how to safeguard machinery and control employee exposure to hazardous energy (lockout/ tagout) during machine servicing and maintenance activities. The section on specific machinery hazards and safeguarding methods identifies the hazards and various control methods for machinery associated with workplace amputations, such as: mechanical power presses, press brakes, conveyors, printing presses, roll-forming and roll-bending machines, shears, food slicers, meat grinders, meat-cutting band saws, drill presses, milling

ISBN: 97819384965-8-5 https://doi.org/10.47461/isoes.2020 002 machines, grinding machines, and slitting machines [2]. A description of accident history with drill presses is presented below.

Accident: 99802.015 - Employee Amputates Two Fingers When Operating A Drill Press

Accident: 99802.015 Report ID: 0729700 Event Date: 10/09/2017										
Inspection	Open Date	SIC Establishment Name								
1270050.015	770050.015 10/13/2017 Fca Lic									
AL S.OU A.M. ON UC						red hand came into contact with the rotating drill bit and				
			•			ered a laceration to his pinky. The employee was hospitalized				
pulled his hand an		The employee	amputated		s from his hand and suff	ered a laceration to his pinky. The employee was hospitalized				
pulled his hand an		The employee	amputated	d his right ring and middle finger	s from his hand and suff	ered a laceration to his pinky. The employee was hospitalized				

Table 1: Shown above is the Employee Amputation two fingers when operating A Drill press [2].

Accident: 202715728 - Drill Press Operator Amputates Ring Finger

			Acciden	t: 202715728 Report ID:	0950633 Event Date: 0	6/19/2013				
Inspection	Open Date	SIC	SIC Establishment Name							
316212695	07/08/2013	5091	Oreq C	orporation						
0.25-inch (6.35-m The employee wa	nillimeter) hole in a piece is wearing gloves while	of steel plate operating the	the stee drill press.	l plate had the dimensions 4 The ring finger portion of the	inches by 1 inch by 0.062 ne glove on his right hand o	orton 7-speed drill press, with Serial Number 15780, to make an 5 inches (102 millimeters by 25.4 millimeters by 1.59 millimeters) got caught in the spinning drill bit, and the finger was amputated gation was initiated at 2:00 p.m. on July 8, 2013.				
		Keywords: ro	tating parts	s, amputated, finger, glove, i	machine operator, caught I	by, elderly, drill press, hand				
Employee #	Inspection	Age	Sex	Degree	Nature	Occupation				

Table 2: Shown above is the Drill Press Operator Amputation Ring Finger [2].

Accident: 202531679 - Employee Gets Middle Finger Amputation From A Drill Press

Inspection	Open Date	SIC	Establishment Name						
313647190	01/17/2013	1799 California Comfort Systems, Inc.							
						ty portable drill press with a magnetic base. Wh			
	atri (criips, cutting	s) from the drill				e drill grabbed his glove pulled it into the drill ar	nd amputated h		
finger.	aur (emps, cutumg.	Proj Type		Keywords: amputated, finger, glo		e drill grabbed his glove pulled it into the drill ar	Fatality		
finger. End Use		Proj Type		Keywords: amputated, finger, glo	ove, saw, drill press				
End Use Manufacturing Employee #		Proj Type		Keywords: amputated, finger, glo	ove, saw, drill press	NonBidgHt			

Table 3: Shown above is the Employee Gets Middle Finger Amputation from A Drill Press [3].

Accident: 99331.015 - Employee'S Hand Is Injured While Operating Drill Press

			Accident	: 99331.015 Report ID: 052	21700 Event Date: 09/	18/2017				
Inspection	Open Date	SIC	Establ	Establishment Name						
1266666.015	09/26/2017		Wiremasters, Incorporated							
						ree loaded a part into the fixture with the drill press running, his cerated. He was hospitalized for his injuries.				
					putated and ring finger la	ree loaded a part into the fixture with the drill press running, his icerated. He was hospitalized for his injuries.				
				e's right middle finger was am	putated and ring finger la					

Table 4: Shown above is the Employee's Hand is injured while Operating Drill press [3].

3. Hazard Analysis of the Craftsman Drilling Press

The drill press should be considered one of the most hazardous tools in the shop. Common injuries on the drill press include broken wrists and fingers, amputated fingers, scalping and eye injuries. Another injury that has a decent amount of frequency on the OSHA website is fractures. An example located in the database is the operator using the drill press had unacceptable PPE to use the machine, and the person's glove got caught in the machinery which lead to a fractured limb. Fingers are easily broken by adjusting the pulleys if the operator accidently turns on the machine while the speed is being adjusted, as with most drill presses there is no safety switch to stop the machine operation if the cover is open [5]. The manual also has a detailed description and instruction on safety and efficient operation, while space limitation do not make it possible to fellow OSHA regulations [5].

4. Safety Analyses

Three different safety analyses techniques were used to review the safe and hazard craftsman drilling press. The first was a preliminary hazard analysis, the second one is the fault tree analysis, and the third one is the failure mode and effect analysis, which is shown below.

4.1 Preliminary Hazard Analysis

See Table 5

Table 5. Preliminary hazard analysis.

HAZARD	CAUSES	EFFECT	CORRECTIVE
The hazard is wearing clothing, jewelry, and long hair could get caught in machine and foreign objects could get into the eyes.	Not wearing proper PPE like safety glasses, full cover shoe [5]	Entanglement leading to personal injury or death [5].	Clothing should be sturdy and snug. Wrap long hair in net. Do not wear rings or jewelry when operating machine. Always wear safety glasses with side shields and full cover shoes [5].
The hazard is spinning parts which can cause injury by the part spinning OR by clothing or body parts being caught by the rotation part.	Drilling incorrectly. (a)Improper operation (b) failure to perform preventive maintenance. (c) Too much preventive maintenance. (d) failure to continuously monitor equipment Bad reliability culture [5]	Machine damage/injury Unchecked machine vibration can accelerate rates of wear (i.e. reduce bearing life) and damage. equipment. Vibrating machinery can create noise, cause safety problems and lead to degradation in plant working conditions. Vibration can cause machinery to consume excessive power and may damage product quality [5].	Never start the machine with the drill bit, cutting tool, or sanding drum against the work piece. Use only drill bits, cutting tools, sanding drums or other accessories with a shank size recommended in your instruction manual. Use only drill bits, cutting tools, or sanding drums that are not damaged. Always use recommended speeds for all operations. Use only accessories that are recommended by the manufacturer for model. Accessories that may be suitable for one tool may create a risk of injury when used on another tool. Make sure there are no nails of foreign objects in the part of the work piece to be drilled.
Electrical Safety	Not turning of off the drill press and it is important to wait for it	Electricity has long been recognized as a serious	Inspect/replace damage or worn power cords immediately. Cord
	to stop before walking away	workplace hazard, exposing	replacement should only be
	from the machine to avoid	employees to electrical shock;	done by factory authorized

ISBN: 97819384965-8-5

004

Proceedings of the The XXXIInd Annual Occupational Ergonomics and Safety Conference September 17-18, 2020

overuse and workload of the	which can result	technician [5]
machine. [5]	electrocution, serious burns,	
	or falls that result in	
	additional injuries or even	
	death; as well as electrical	
	arc-flash and electrical arc-	
	blast. Electric current can	
	produce deep and severe	
	burns in the body due to	
	power dissipation across the	
	body's electrical resistance.	
	Dystonia is the condition	
	where muscles involuntarily	
	contract due to the passage	
	of external electric current	
	through the body. It is	
	important to turn off because	
	it generates bills	

Fault Tree Analysis.

The specific accident scenario selected for the fault tree was amputation or other serious injury [Fig 1].

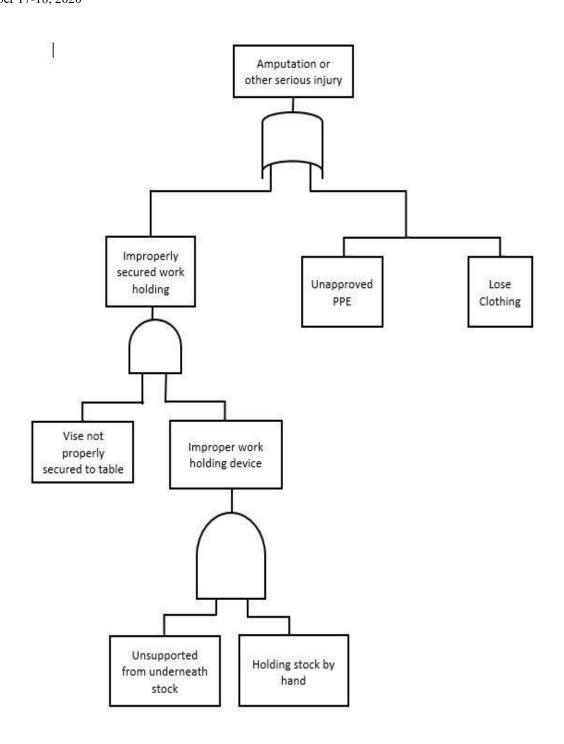


Table 6: Below is the failure mode and effects analysis [FEMA] of craftsman drill press.

Item / Function	Potential Failure Mode(s)	Potential Effect(s) of Failure	Se v	Potential Cause(s)/ Mechanism (s) of Failure	Pro b	Current Design Controls	De t	RP N	Recommended Action(s)	Responsibility & Target Completion Date
Belt cover/ Belt guard	Guard is affixed with a spring clip	Fingers or other appendages could get caught in spinning pulleys and belts	2	Human error	4	Simple spring clip	4	32	Design a thumb screw into the mechanism to replace the spring clip	NA
Spindle guarding	Machine guarding	Hot metal cuttings flung into the operator	2	Manufacturer oversight	8	There is no spindle guard on the current model	3	48	Design or buy a better proprietary or universal spindle guard.	NA
Work holding	No standard work holding comes with drill press	Operator mar hold work with hands, and work could come lose from operator	5	Manufacturer oversight	8	Standard Drill press table	8	320	Include an entry level work holding tool to keep costs low to customer	NA
Machine mounting	Most drill presses must be mounted to the floor	Drill press could tip during operation	2	Requirements Overlooked	3	Free standing pedestal	3	18	Include anchors for mounting	NA

Proceedings of the The XXXIInd Annual Occupational Ergonomics and Safety Conference September 17-18, 2020

5. Conclusions

Primary hazard analysis is used to determine what potential hazards of craftsman drilling press may pose to the operator or others standing by. By evaluating the potential hazards, their causes and then taking correct and preventative measures, user exposure to the hazards involved when using craftsman man drilling press is lessened. The fault tree analysis was a useful tool. Using the AND OR logic to produce a sequence of events that pose a potential hazard help clarify those combination of conditions which can result in an accident. The fault tree is a graphical approach to the organization of potential faults and failures that could lead to a larger hazard. The failure mode effects analysis takes specific components of the device, their function, failure mode, and cause, other components the failure could cause failure to, and corrective action that can be used to prevent failures. However, it's important when considering safety, identify equipment failure can save of time in repairing equipment and prevent injuries caused by equipment failure.

The case studies show that conclusions can be drawn concerning with that the drill press is a tool that comes with unforgiving consequences. The primary function of a drill press is to drill holes. However, if some of the simple safeguards are overlooked, a person could be a victim of the rotational inertial of the tool. It is so important that operators observe safety in all aspects of machine operation. The operators should not be wearing loose clothing that could get caught in one of the few spinning objects of the press. Overall, a drill press is a safe tool if the following precautions are followed: wearing safety glasses, avoiding loose clothing, and reading all instructions.

6. References

OSHA webpage (Accessed 14th September 2020) https://www.osha.gov/

OSHA Accident database (Accessed 14th September 2020)

https://www.osha.gov/pls/imis/accidentsearch.accident_detail?id=99802.015.

OSHA Accident database (Accessed 14th September 2020)

https://www.osha.gov/pls/imis/accidentsearch.accident_detail?id=99331.015

OSHA safety guarding equipment and protecting employees from amputations (Accessed 14th September 2020)

https://www.osha.gov/Publications/OSHA3170/3170-02R-2007-English.html

Patrick L. York, Scott Beattie, and Don Hannegan (2010) drilling press hazard management: the value of risk assessment. Thompson rivers university (2014) "occupational health &safety" http://tomstechniques.com/wp-content/uploads/2014/03/DRILL-PRESS-SAFETY.pdf